• Français

Centre de recherche
Thursday, February 20 2020
Press release

Major discovery in the genetics of Down syndrome

New research highlights the RCAN1 gene’s effect on memory and learning.

MONTREAL, February 20, 2020 – Researchers at CHU Sainte-Justine and Université de Montréal have discovered a new mechanism involved in the expression of Down syndrome, one of the main causes of intellectual disability and congenital heart defects in children. The study's findings were published today in Current Biology.

Down syndrome (SD), also called trisomy 21 syndrome, is a genetic condition that affects approximately one in every 800 children born in Canada. In these individuals, many genes are expressed abnormally at the same time, making it difficult to determine which genes contribute to which differences.

Professor Jannic Boehm's research team focused on RCAN1, a gene that is overexpressed in the brains of fetuses with Down syndrome. The team's work provides insights into how the gene influences the way the condition manifests itself.

Synaptic Plasticity, Memory and Learning

The human brain is made up of hundreds of billions of cells known as neurons. They communicate with each other through synapses, which are small gaps between neurons. The ability of synapses to strengthen or weaken over time is known as “synaptic plasticity.” It’s an important biological phenomenon because it’s essential for memory and learning.

“There are two kinds of synaptic plasticity: long-term potentiation, which strengthens synapses and improves interaction between neurons, and long-term depression, which weakens synapses,” said Boehm, a professor at Université de Montréal and researcher at CHU Sainte-Justine.

“We already knew that synaptic plasticity is influenced by certain proteins," added Anthony Dudilot, one of the study’s first authors. "For example, calcineurin is inhibited when long-term potentiation is induced, but it's activated when long-term depression begins. But the molecular mechanism underlying calcineurin regulation was less clear.”

The research team found that the various signalling pathways that trigger synaptic potentiation or depression converge on RCAN1. They also determined that the gene regulates calcineurin activity by inhibiting or facilitating it.

Given its dual role as an inhibitor/facilitator, the researchers deduced that RCAN1 works as a “switch” that regulates synaptic plasticity, thereby affecting learning and memory.

A Better Future for all Patients

“This is the first time that the molecular mechanism for calcineurin regulation in bidirectional synaptic plasticity has been determined," said Boehm. "This breakthrough explains how overexpression of the RCAN1 gene could cause intellectual disabilities in individuals with Down syndrome. It also opens up the possibility of developing innovative treatments for affected patients."

About the Study

RCAN1 regulates bidirectional synaptic plasticity” was published in Current Biology in February 2020. The first authors are Anthony Dudilot and Emilie Trillaud-Doppia, PhD candidates supervised by Jannic Boehm. The senior author is Jannic Boehm, PhD, an associate professor at UdeM's Department of Neurosciences and researcher at CHU Sainte-Justine. The study was backed by the Canadian Institutes of Health Research (CIHR), Fonds de recherche du Québec – Santé (FRQS), the Alzheimer Society of Canada and Université de Montréal.

– 30 –

About the CHU Sainte-Justine Research Centre

The CHU Sainte-Justine Research Centre is a leading mother-child research institution affiliated with Université de Montréal. It brings together more than 210 research investigators, including over 110 clinician-scientists, as well as 450 graduate and postgraduate students focused on finding innovative prevention means, faster and less invasive treatments, as well as personalized approaches to medicine. The Centre is part of the CHU Sainte-Justine, which is the largest mother-child centre in Canada and second pediatric centre in North America. More on research.chusj.org

Source
CHU Sainte-Justine
Contact

Source:
Maude Hoffmann
Communications, CHU Sainte-Justine Research Centre
communications@recherche-ste-justine.qc.ca 

Media contact:
Florence Meney
Senior Advisor – External Media
CHU Sainte-Justine
Tel.: 514-755-2516
florence.meney.hsj@ssss.gouv.qc.ca 

About this page
Updated on 2/20/2020
Created on 2/19/2020
Alert or send a suggestion
 

Every dollar counts!

Thank you for your generosity.

It's people like you that allow us to accelerate research and heal more children better every year and, as such, offer among the best healthcare in the world.

It's also possible to give by mail or by calling toll-free

1-888-235-DONS (3667)

Contact Us

514 345-4931

Légal

© 2006-2014 CHU Sainte-Justine.
All rights reserved.
Terms of Use, Confidentiality, Security

Avertissement

Les informations contenues dans le site « CHU Sainte-Justine » ne doivent pas être utilisées comme un substitut aux conseils d’un médecin dûment qualifié et autorisé ou d’un autre professionnel de la santé. Les informations fournies ici le sont à des fins exclusivement éducatives et informatives.

Consultez votre médecin si vous croyez être malade ou composez le 911 pour toute urgence médicale.

CHU Sainte-Justine